
A Dynamic Kernel Modifier for Linux

Ronald G. Minnich

Los Alamos National Laboratory
�

Advanced Computing Laboratory
MS-B287

Los Alamos, NM 87545 USA
rminnich@lanl.gov

September 6, 2002

Abstract

Dynamic Kernel Modifier, or DKM, is a kernel module
for Linux that allows user-mode programs to modify the
execution of functions in the kernel without recompiling
or modifying the kernel source in any way. Functions may
be traced, either function entry only or function entry and
exit; nullified; or replaced with some other function.

For the tracing case, function execution results in the
activation of a watchpoint. When the watchpoint is ac-
tivated, the address of the function is logged in a FIFO
buffer that is readable by external applications. The
watchpoints are time-stamped with the resolution of the
processor high resolution timers, which on most modern
processors are accurate to a single processor tick.

DKM is very similar to earlier systems such as the
SunOS trace device[1] or Linux TT[5]. Unlike these two
systems, and other similar systems, DKM requires no ker-
nel modifications.

DKM allows users to do initial probing of the kernel to
look for performance problems, or even to resolve poten-
tial problems by turning functions off or replacing them.
DKM watchpoints are not without cost: it takes about 200
nanoseconds to make a log entry on an 800 Mhz Pentium-
III. The overhead numbers are actually competitive with

�

Los Alamos National Laboratory is operated by the University
of California for the National Nuclear Security Administration of the
United States Department of Energy under contract W-7405-ENG-
36.LA-UR-02-557

other hardware-based trace systems, although it has less
accuracy than an In-Circuit Emulator such as the Amer-
ican Arium. Once the user has zeroed in on a problem,
other mechanisms with a higher degree of accuracy can
be used.

1 Introduction

One of the most frequently asked questions about kernels
is “where is all the time going?” We have long wondered,
for example, where the time is spent when a program
sends a packet. We have found after asking people who
should know that no one really knows. Many people have
conjectures based on intuition, but in all too many cases
the intuition has proven to be wrong. Very simple probing
can be done using sufficiently clever external programs,
but for the most part, the kernel is a black box which is
difficult to measure.

A number of systems have been developed over the
years to help resolve these questions. One such system is
the SunOS trace device[1]. The trace device was present
in SunOS at least as early as SunOS 4.1, ca. 1991. It is
possible it was present even earlier, but the exact time of
creation is hard to fix for reasons discussed below. An-
other device is the Linux Trace Tool (or TT) device. This
device provides sophisticated software tracepoint support,
albeit at moderate cost. We give an overview of these de-
vices below.

1

1.1 SunOS/Solaris trace device

The SunOS trace device consisted of several components:
a macro that logged data into a FIFO; a device that could
give user programs access to the FIFO; and user programs
that read the data from the device and turned it into useful
information. None of these components were available to
us in 1991 when we first encountered this device. As far
as we know, the trace device at the time was for Sun inter-
nal use only. The only hint of the trace device’s existence
were the mysterious TRACE macros scattered throughout
the kernel source.

We found that Sun programmers had used the TRACE
macro in many places in the kernel. The macro was nor-
mally disabled, i.e. compiled to no code at all, but could
be enabled if desired when the kernel was built. There was
no problem in using the macro, since in kernels as shipped
it was compiled out. The macro accepted a fixed number
of parameters as well as a constant describing the class of
trace entry it was creating. In the source as shipped this
macro was never enabled or even available; the include
and source files for the trace device were not included in
the SunOS source tree. We did not even know the values
of the constants for trace classes.

Since the SunOS trace device was not available to
us, we really have no idea what ultimate functionaly the
macro and device provided. The presence of the macros in
SunOS source did provide us with a very convenient set of
examples and hooks for tracing. We decided to implement
our own macro and trace device;we will now describe the
trace device we implemented at the Supercomputing Re-
search Center in 1991.

Our trace device had several capabilities. If the trace
device was not opened, then no data was recorded in the
FIFO. Once the user program had opened the trace de-
vice, it could control the size of the FIFO. The user pro-
gram could also set a mask, so that only events of a certain
class were recorded. We defined the trace class constants
as bits so facilitate trace enables. The device supported
memory-mapped I/O for maximum efficiency: memory-
mapped I/O was worth at least a factor of two improve-
ment in performance on SunOS at that time.

The user program had access to a read-only trace buffer
as well as read-only control variables. The kernel would
always write into the FIFO, and the user program used the
counters to determine when new data was in the FIFO, and

also how much data it had missed in the event of overrun.
We required that the size of the buffer be a power-of-two
so that we could use a classic hardware trick: a 32-bit
FIFO counter counted the number of FIFO entries, and the
low-order N bits of the counter mapped to the slot number
of the next entry.

One of our user programs was a TCL program which
made reading and dumping the data easy. Once data was
saved, we used other programs to analyze the data. Using
this information we were able to measure and optimize
the performance of Mether[4], MNFS[3], and the NFS file
system.

About the same time that we developed our trace de-
vice, Brent Welch at XEROX PARC developed his own
trace device driver and set of tools. Our systems were
very similar. Neither system was ever generally released
to the Open Source community. The vibrant Open Source
community we take for granted today had barely begun to
exist in 1991.

1.2 Linux Trace Tools

Once the research community made the transition to open
source operating systems such as FreeBSD and Linux,
the capabilities of the SunOS trace device were no longer
available. SunOS as shipped contained a substantial num-
ber of tracepoints. We did not need to add many of their
own. The Open BSD-based and Linux operating systems,
in contrast, had no support for tracepoints, and hence no
installed tracepoints. It is true that adding tracepoints, a
tracepoint device, and user programs is not a difficult task,
but trying to keep one’s changes in sync with kernels that
may be changing on a weekly basis is a burden.

Nevertheless the Linux Trace Tools (LTT) effort has
made a first try at implementing a trace device capabil-
ity. It is an extremely capable device.

The LTT consists of a set of kernel patches, device
driver, and user programs. The LTT provides a set of
GUIs for viewing events.

The problem with the LTT, from our point of view,
is that the patches are very specific to a kernel version.
The latest stable LTT, for example, only supports kernel
versions 2.2.17 and 2.4.0-test10. The patches are large
(4000 lines for 2.4.10); invasive, requiring modifications
to 47 source files in 2.4.10; and difficult to turn on and
off, since turning them off requires a kernel recompile, as

does adding new tracepoints. For this reason tracepoints
are not added lightly.

Finally, the LTT has a bigger time footprint for record-
ing a trace than we are comfortable with. The device itself
is complex, and does a great deal of work per trace.

1.3 DKM

We implemented DKM because we need to monitor the
Linux kernel at a time when versions are changing almost
weekly. The LTT, as mentioned, requires patching the ker-
nel, and has major difficulties with several recent kernel
versions. LTT has had a hard time keeping up with the
pace of change of Linux. Because we are tracking the lat-
est kernel, it is essential that we be able to instrument the
latest kernel.

We also decided that we were no longer willing to re-
compile the kernel every time we wanted to add a trace-
point. In the SunOS days we often found that we had built
a kernel and needed yet another tracepoint. Every trace
package with which we are familiar imposes the same re-
quirements: adding traces requires a kernel rebuild and
reboot step. We wanted the ability to add and remove tra-
cepoints at will, to any running kernel, without changing
the kernel source at all. We also wanted the monitoring
system to be easily removed with one command.

Once we had implemented DKM we realized that with
just a bit more work we could add two additional valuable
capabilities: we could nullify a function, and we can also
replace a function in a running kernel. This type of con-
trol has great utility in the protocol stack. While debug-
ging one problem, for example, it would have been very
useful to be able to disable delayed acks in TCP. There
is a a kernel API for doing this, but it does not work.
DKM would have allowed us to experiment with turning
the delayed-ack function off or replacing it with one that
worked better.

DKM consists of a pseudo-device module and a user-
level library which allows the user to insert tracepoints
into a live kernel. No kernel patches are needed. Many
Linux tools that deal with kernel symbols (e.g. all the
module tools) can only use exported symbols as found in
/proc/ksyms. If a symbol is not exported, the kernel
has to be rebuilt. For DKM, the exportable symbols from
a kernel need not be changed, since the kernel symbol ta-
ble (System.map) can be used to locate functions. The

basic user-level program takes a list of addresses to watch
in the kernel and sets tracepoints. We use Perl scripts to
convert symbol names in the kernel to addresses.

The basic operation of DKM is to replace the first few
instructions of a traced application with a call to a dynam-
ically generated code stub. The instructions replaced by
the stub are moved to, and executed in, the stub. We de-
scribed the actual stub in more detail below. Note that it
is essential that the stack frame of the stub be identical to
the stack frame of the function.

DKM does not support arbitrary code placement. We
target placing tracepoints at function entry. The set of in-
structions used by GCC at function entry is very limited,
and we have exploited this fact: we can not parse the en-
tire x86 instruction set, and hence can not substitute for
an arbitrary instruction sequence anywhere in the kernel,
only a limited set of instructions (25 at last count) that are
typical of those used at the start of a function: load/store
from stack; move registers; grow/shrink the stack; and so
on.

2 Architecture of DKM

As mentioned above, DKM consists of a pseudo-device
module for Linux; a small library for manipulating trace-
points; a set of assembly-code stubs for code modification
support; and a set of instruction patterns that the library
uses to determine how to build the dynamic code stub for
the code modification.

Save for the pseudo-device, all the code works in user-
mode for programs, and was in fact developed and de-
bugged in user mode prior to being tested in the kernel.
The library interface in both user and kernel mode is the
same, although we provide additional interface funtions
for user-mode access to the device. DKM can be used for
much more than just kernel modifications.

Tracepoint insertion is a specialized instance of the
more general case of modifying the function entry. A set
of tracepoint support functions and an API are provided
as part of the standard DKM source, although users can
easily write their own and use them instead.

Because tracepoints are both the most common appli-
cation of DKM and exercise all the functions of DKM, we
will discuss them in detail below. The mechanics of the
tracepoint implementation are the most interesting so we

will cover that part first.

3 Inserting tracepoints

Tracepoints are code segments that record execution of a
specific function. A given tracepoint only records an indi-
vidual function. Because they augment the function, and
hence increase the number of instructions the function ex-
ecutes, tracepoints must exist in memory allocated outside
the function. Tracepoint code is responsible for calling a
trace function, executing the first few instructions of the
function in that function’s stackframe,and resuming the
function at the correct place. On Pentiums, tracepoint in-
sertion is complicated by the variable-size instruction set
of the x86 architecture.

A tracepoint consists of a dynamically allocated code
stub that contains a prologue, used to call the logging
function; the relocated code that used to be at the start
of the function; and a jumpback which jumps back to the
rest of the function. The prologue is fixed in size. The
relocated code will vary in size, since on a CISC machine
like the x86 instructions are variable length. The size of
the jump is similarly fixed in size. Overall, however, the
code stub will vary in size due to the variation in size of
the relocated code.

Inserting a tracepoint requires that we:

� figure out the relocated code size, i.e. how many
bytes of instructions we need to relocate from the
function to the tracepoint stub (note: on CISC ma-
chines this is more complex than, e.g., on Alpha)

� Compute the stub buffer size, given the relocated
code size, and the prologue and jumpback code size

� allocate memory for the stub

� copy the prologue code to the stub

� save the relocated code from the start of the function
to the stub after the prologue code

� install the jumpback code into the stub after the relo-
cated code

� replace the start of the function with a call to the stub;
fix up the relative address in this call so it calls the
stub buffer correctly

� fix up addresses in the stub to point to the correct
locations, including call stack return addresses, calls,
relative jumps, and the jumpback address

Figure 1 shows how the code looks before and after the
tracepoints are inserted. This same technique is used both
in kernel and user modes.

Most of the code to handle tracepoint insertion is writ-
ten in C, in an architecture-independent manner. Some
code is necessarily written in assembly; the prologue
code, which is (on x86 machines) 2 instructions; the
jumpback code, which is 1 instruction; and the call code,
which is 1 instruction. C code needs to rewrite pieces of
the assembly code with addresses; to support the C code
the assembly code exports sizes of assembly code blocks
and offsets into the blocks for addresses. The C code has
no knowledge of the details of assembly code. The only
issue in C is the need to fix up relative addresses for jumps
and calls. To support the address fixup, the assembly code
also generates named variables that the C code can use to
locate fixup addresses.

The C code needs to replace the instructions at the be-
ginning of the traced function with a call to the tracepoint
stub. To do this, the code must replace an integral num-
ber of instructions with a call instruction. The size of the
instructions to be replaced may be larger than the call in-
struction.

We call this process sizing. The issue of sizing is a bit
complicated, but we have simplified it greatly by restrict-
ing ourselves to code patterns most commonly found at
function entry. Once again we use generated assembly
code to initialize data structures used by C. The structures
describe the code patterns and the size of the code, as well
as whether the instruction has a fixed part and an argument
(e.g. immediate data).

Tracepoint handlers are called from the tracepoint stub.
The call to the tracepoint stub pushes the PC of the traced
function on the stack, so this PC is available to the trace-
point handler. The handler can examine all the parameters
passed to the function, and determine the PC of the func-
tion.

Every traced function can have a different tracepoint
handler, although to date we have only used one partic-
ular tracepoint handler. The tracepoint handler code is
written in C and can be arbitrarily complex, with the pro-
viso that if a time-critical function is being traced then

0:					push %ebx
1:		sub $0x4, %esp

4:	move %esp, %eax
6:					push %eax

.

.

.

.

.

0:					push %ebx
1:		sub $0x4, %esp

4:	move %esp, %eax

.

.

.

.

.

0:call 0x80400000
prologuestart:
call logtrace

addl $4, %esp

jmp func+6

6:					push %eax
.
.
.
.

New Stub Code for Tracepoint

Original Code

Before After

Figure 1: How the code stub modifies the function.

the tracepoint handler should do as little as possible. We
could in theory have the tracepoint handlers do far more
than simply log the function execution: in the limit they
could even modify system call behavior. So far, we have
limited ourselves (in kernel) to filling the FIFO with trace
information.

We had not been using the system long when users de-
manded the ability to track returns. Code for returns is
necessarily more complex because the caller of the func-
tion is dynamic. The prologue code must be augmented
to save the caller address for later use and to arrange for
function return to be routed through code to trace returns.

We show the additional structure in Figure 2.

The first function we implemented in DKM was the
tracing function entry, followed by the code to support
function exit. Once we had these we realized that nullify
functions and replacing a function with a different func-
tion would be easy. Since we needed those capabilities we
implemented them. The existing library was sufficiently
powerful that adding these two new functions only took
an hour or so.

4 Nullifying Functions

Nullifying a function is simple. DKM saves the function
entry code as before, and replaces it with code to set a
return value for the function, followed by an immediate
return. The function entry code is not executed.

The API allows the user to specify the return value for
the nullified function. We have experimented with replac-
ing the system time function with one that always returns
0. The effects on the kernel (and X11) are revealing.

This capability would have been very useful to us last
year when dealing with a bug in delayed ACK handling.
We suspected that a particular function in the kernel was
at fault, and testing would have involved repeated kernel
compiles – too painful to deal with at the time. Had we
been able to simply nullify the function in a second or so,
we would have been more willing to verify the cause of
the problem.

5 Replacing Functions

Replacing a function with another function is the hardest
thing to do in DKM. Because the replacement function
must become part of the kernel address space, DKM re-
quires that the user compile the function in to the DKM
kernel module. This operation is doable but hardly for
the faint of heart. Nevertheless it provides an extremely
useful debugging capability.

For example, if one is trying to track certain behaviour
in a particular kernel system call, one can easily replace
that kill with code that provides the extra information.
This operation normally requires rebuilding the kernel.
What is nice about DKM is that the replacement is triv-
ial to undo, as opposed to direct changes to the kernel that
can only be undone by another kernel rebuild. Our expe-
rience has shown that DKM can shorten the edit, compile,
test iteration for kernel changes from the current 10 min-
utes to a few seconds.

Once a given change has been tested and shown satis-
factory it can be compiled into the kernel for good.

We had a recent experience where this capability would
have been very useful. It so happens that the Linux code
to allocate a new Process IDs (PIDs) had a simple bug
that failed on SMP kernels under high load. Testing of a
replacement function took some time, and each iteration
required a kernel build and reboot. Had DKM been avail-
able we could have experimented with fixing the function
with much less time lost waiting for kernel compiles and
reboots.

Another useful test would be to see the effect on Linux
of PIDs of more than 15 bits, i.e. in a range of 1-32767
(0 is an invalid PID). Since the container for 15-bit pids is
a 16-bit short, we can make a simple test by replacing
the new PID function with one that returns pids in the
range 32768-65536. This is a trivial test but could quickly
point out any problems. Since backing out replacement
functions is a single ioctl call, any problems caused by
our alternate new PID function can be quickly eliminated.

DKM function replacement allows testing of alterna-
tive low-level kernel functions without modifying the ker-
nel in any way, and in a way that can be backed at the cost
of a kernel system call. In the worst case, a user can re-
move the DKM module and ensure that any and all DKM
modifications are totally removed.

0:					push %ebx
1:		sub $0x4, %esp

4:	move %esp, %eax
6:					push %eax

.

.

.

.

.
ret

0:					push %ebx
1:		sub $0x4, %esp

4:	move %esp, %eax

.

.

.

.

.

0:call 0x80400000

rprologuestart:
pushl %eax

// save return address
movl 8(%esp,1), %eax

movl %eax, realreturn+1
// replace return address with return tracer

movl tracereturn, %eax
movl %eax, 8(%esp,1)

popl %eax
call logtrace

addl $4, %esp

jmp func+6

6:					push %eax
.
.
.
.

ret

New Stub Code for Tracepoint

Original Code

push %eax // save return result
call logtrace
popl %eax

// only way to get an abs jump easily: push address, pop
pushl %aabbccdd // this is rewritten from above code

ret

Return to caller

Before After

Figure 2: Code structure to track both calls and returns

6 Library Interface

DKM provides two library interfaces. The first allows a
program (or the kernel) to modify its own code space, and
manages the set of modifications with reference counts.
This code is used by either the kernel or an application
to modify itself. The second provides an interface to the
kernel device. This latter code is used by programs to
modify the kernel.

6.1 Common DKM functions

We show the common library functions in 6.1.
When these functions are run in user mode the trace-

point functions must write-enable the code page contain-
ing the function. In kernel mode write-enabling code seg-
ments is not an issue.

6.2 DKM Kernel Interface Library

The kernel library interface provided for the DKM device
allows user program to set and clear tracepoints; query de-
vice status; invoke test functions; and read the tracepoint
buffer.

An application which uses this library will open the de-
vice, intialize it, set tracepoints on some functions, and
periodically dump the FIFO to a file. For timing pur-
poses, the application can set its own “marks” in the trace
log kernel via the dkmtestentry function, which will
place an entry in the FIFO.

7 Performance

The performance measure of DKM falls into two main ar-
eas: impact of DKM on the kernel, and the precision and
accuracy with which DKM measurements can be made.
In the next section we discuss the overhead of DKM.

7.1 Performance

The first test is to see how much time it takes to insert
time stamps into the kernel. We measure this time by
a sequence of back-to-back dkmstamp operations, and
measuring the time between each. We iterate until the
value converges to within a tick or so.

Measured performance on an 865 Mhz Pentium-III is
625 TSC ticks. A tick on this sytem is about 1.15 nanosec-
onds; thus, cost to add a trace entry from user mode is
about 720 nanoseconds on this CPU.

The next number we measure is pure tracepoint cost.
To measure this value we enabled the test checkpoint via
dkmsettesttrace and call dkmtesttrace many
times. The measured performance on average is 170 TSC
ticks, which comes out to 200 nanoseconds.

The 200 nanosecond number is remarkably consistent
across a number of measurement cycles. If we set a
watchpoint on open_msr, and run a program which
opens /dev/cpu/0/msr one million or ten million
times, the additional cost averages to 200 nanoseconds per
call.

The cost of tracing returns as well as function entry is
much higher – it triples the cost to 600 ns. Users need
to carefully consider whether they need call/return trac-
ing or just call tracing, rather than just blindly enabling
call/return tracing.

A comparison with alternative hardware-based tech-
niques is in order. Users wishing to trace program exe-
cution can modify functions to output trace information
to a parallel port, as in [2]; use an In-Circuit Emulator
(ICE) to trace functions; or output trace information to a
PCI bus and use a PCI bus analyzer to store tracepoint
information.

Programs that output trace data would need to output at
minimum 9 bytes of data to the parallel port: 8 bytes of
TSC, and one byte of function identifier. Output byte in-
structions take about one microsecond on most systems,
so this option would require 8 microseconds to execute:
40 times slower than our current performance. The paral-
lel port approach was fast in 1989, but is too slow now.

We have used In-Circuit Emulators for function tim-
ing. They can provide very precise timing, but can be
difficult to use. The system must be partly disassembled
and moved to a workbench to use an ICE. There are sys-
tems on which it is impossible to use them at all (laptops,
embedded boards, or non-Pentium systems). Finally, the
ICE can greatly impact the performance of the system,
typically requiring that the system run at half-speed.

A final option is to place a PCI trace card in the system.
Tracepoint support functions can output a trace value to
a well-known address. Measured performance of PCI bus
write cycles shows that this option would be no faster than

name Function
void libtpinit(void); Initialize the functions
TRACEPOINT *addnulify(void *func,
unsigned long retval);

Nullify function func. Set the return value to retval.

TRACEPOINT *addreplace(void *func,
void *callfunc);

Replace func with callfunc.

TRACEPOINT *tracepoint(void *func,
void *bfunc);

Add a tracepoint to a function func, with bfunc as the tracepoint handler.

TRACEPOINT *rtracepoint(void *func,
void *bfunc, void *rfunc);

Add a tracepoint to a function func, with bfunc as the tracepoint handler for
function entry, and rfunc as the tracepoint handler for function exit.

int untracepoint(void *func); Remove a tracepoint for function func. Tracepoints actually have reference
counts, so a tracepoint is not removed until all users have removed it.

void remove_all_trace(void); Unconditionally remove all breakpoints, ignoring reference counts. The main
use of this function is when unloading the device, if ill-behaved programs have
left breakpoints hanging around.

Figure 3: common library functions

name Function
int dkminit(int exponent); Initialize the device. exponent defines the size of the buffer, as a power of two,

with an offset of 12 (i.e. starting at a minimum of one page)
int dkmgetinfo(struct dkm_info *info); Get information from the device about the size of the buffer, current tracepoint

count, and the last tracepoint read from the FIFO
int dkmtestentry(struct trace_entry *en-
try);

For testing, insert a tracepoint record into the tracepoint FIFO

int dkmtracepoint(struct dkmtrace *tra-
cep);

Set a tracepoint. The dkmtrace structure includes the address of the tracepoint
and any options.

int dkmrtracepoint(struct dkmtrace *tra-
cep);

Set a tracepoint. The dkmtrace structure includes the address of the tracepoint
and any options. This variation will trace both calls to the functions and returns
from the function.

int dkmsetreplace(struct dkmreplace
*tracep);

set a replace point. The parameters are set in the dkmreplace struct.

Figure 4: tracepoint library functions

name Function
int dkmsetnullify(struct dkmnullify
*tracep);

Set a nullify. The parameters are set by the dkmnullify struct.

int dkmuntracepoint(struct dkmtrace
*tracep);

Clear the tracepoint. The tracep struct has a virtual address which is used to locate
the tracepoint. This function is in fact used to remove all types of tracepoints,
nullifies, and replaces; in reality this parameter should be a union.

int dkmreadtrace(struct trace_entry *en-
tries, struct dkm_info *info);

Read the DKM trace buffer

int dkmdumptrace(FILE *f, struct
trace_entry *entries, size_t size);

dump the trace_entry area trace for size bytes to FILE f

int dkmtestsettrace(void); Set a tracepoint to a test function
int dkmtesttrace(void); invoke the test function. If the test tracepoint has been set then the invocation of

the function will result in a trace entry being written to the FIFO
int dkmtestclrtrace(void); Clear the test tracepoint
int dkmreaddump(FILE *f, struct
trace_entry *entries, struct dkm_info
*info);

Read all tracepoint entries from the device and dump them to the FILE f.

int dkmstamp(int val) Put an entry in the trace FIFO with a PC value of val. This function is used to
test the DKM kernel to user interface.

Figure 5: tracepoint library functions (cont.)

the software-based technique outlined in this paper.
In summary, the cost of DKM tracepoints is about 200

nanoseconds for tracing function entry, and 600 nanosec-
onds for tracing function entry and exit. DKM tracepoints
are at least as fast as other hardware-based options.

8 Example usage

In this section we present a sample program that uses the
kernel device. The program is called watchmany and
can be used to watch arbitrary functions in the kernel. The
start of the source to the program is shown in 6. The im-
portant call is to dkminit. The value of ’1’ indicates a
4096-byte buffer.

The middle section of watchmany is shown in Figure
7. The first step is to get information out of the kernel
about the device. This information is used in later calls to
the library.

The dkmdumpstatus call provides an informative
message about the state of the device. The user must next
allocate an array of trace entries large enough to accomo-
date the entire kernel trace entry buffer. Having a large
enough array is an absolute requirement imposed by the

kernel device. If the passed-in array is not large enough,
the kernel module returns EINVAL to the user program.

The next step is to scan all the arguments and set watch-
points for them.

The program waits for the user to hit return, removes
all tracepoints, and then dumps all the trace entries accu-
mulated by the kernel.

The output of the program is shown in Figure 9. The
format of the entries is calling PC/Arg High-32-
bit/Low-32-bits. The exit entries can be distin-
guished by the fact that the value is not a valid kernel
Program Counter value.

9 Conclusions

DKM is a system for modifying functions used in the ker-
nel. While the original use of DKM was inserting trace-
points into a kernel, it has expanded to provide function
nullification and replacement. In our work on kernels we
have frequently had need of both these capabilities.

DKM is a loadable module and requires no patches or
changes to the kernel; users do not need to recompile the
kernel to use DKM capabilities. DKM is almost unique

#include "dkm.h"

int
main(int argc, char *argv[])
{

struct dkm_info info;
struct dkmtrace *tracep;
struct trace_entry *entries;
char *type = argv[1];
int amount, i;
int dumptrace = 0;

if (dkminit(1) < 0) {
perror("kbpinit()");
exit(1);

}

Figure 6: setup code for watchmany

in this regard. DKM is also simple to use, and does not
require even a limited understanding by users of the in-
struction set of the machine it is used on, in contrast to,
e.g., the Dyninst tools. Any programmer familiar with the
C language can use DKM with ease.

Performance of DKM is comparable to the best per-
formance of hardware-based monitors. DKM tracepoints
require 160 cycles, and as a result DKM is suitable for
functions that take 1600 or more instruction cycles. An
example is an open system call, which we have measured
at several thousand ticks depending on which device or
file system is opened. Gettimeofday, in contrast, is a
much shorter call and tracing it perturbs it significantly.
We have experimented with nullification of gettime-
ofday with interesting results.

References

[1] Sun Microsystems Corporation. SunOS Reference
Manual, 1990. Sun Microsystems, 1990.

[2] Not Yet Known. Paper on parallel port monitor. In
Late 1980s Usenix Conference, 1989.

[3] Ronald G. Minnich. Mether-NFS: A modified NFS
which supports virtual shared memory. In Proc. of the
Usenix Symp. on Experiences with Distributed and

Multiprocessor Systems, pages 89–108, San Diego,
CA (USA), 1993.

[4] Ronald G. Minnich and David J. Farber. The Mether
system: Distributed shared memory for SunOS 4.0.
In Proceedings of the 1989 Summer Usenix Technical
Conference, pages 51–60, Summer 1989.

[5] Karen Yaghmour and Michael R. Dagenais. Measur-
ing and characterizing system behavior using kernel-
level event logging. In Proceedings of the 2000 An-
nual Usenix Technical Conference, 2000.

dkmgetinfo(&info);
dkmdumpstatus(stdout);

entries = malloc(info.total_size);

argc -= 2;
argv += 2;

tracep = malloc(argc * sizeof(*tracep));

if (! tracep) {
perror("tracep");
exit(1);

}

for(i = 0; i < argc; i++) {
sscanf(argv[i], "0x%x",

(unsigned long *)&tracep[i].v);
tracep[i].options = 0;
if (*type == ’r’) {

dkmrtracepoint(&tracep[i]);
else
dkmtracepoint(&tracep[i]);

}

// wait for user to hit LF ...
getchar();

}

Figure 7: Setting up the tracepoints

printf("Removing tracepoint\n");
for(i = 0; i < argc; i++)
if (dkmuntracepoint(&tracep[i]) < 0)

perror("untrace one");

dkmreaddump(stdout, entries, &info);

return 0;
}

Figure 8: Finishing up: dumping the buffer and removing the tracepoints

./watchmany r 0xc01c7070 0xc01c5fb0
next_empty 1 last_read 0 \

total_entry 4096 total_size 65536

Removing tracepoint
next_empty 283 last_read 0 \

total_entry 4096 total_size 65536
282 entries
0: 0xc01c5fb0/0x35d 0x1310:0xd53bd3c3
1: 0x4c/0x1035d 0x1310:0xd53bdaf7
2: 0xc01c5fb0/0x35d 0x1310:0xd53bfb39
3: 0x14/0x1035d 0x1310:0xd53c000e
4: 0xc01c5fb0/0x333 0x1310:0xd541fa18
5: 0x20/0x10333 0x1310:0xd542049d

.

.

.

.

Figure 9: Output of the program for ping localhost

